Parts-Per-Trillion Moisture Detection in Electronic-Grade Bulk Gases
The semiconductor market is seeing a new era of innovation, with new applications fueling demand for advanced semiconductor devices that put more stringent requirements on reliability, power handling capability and power consumption, while packing more functionality into a smaller package and decreasing technology nodes.
Among these demanding applications are increasingly more powerful smartphones and tablets that aim—at the same time—to improve battery life. More recently, automotive sensor systems, the Internet of Things (IoT), the next generation of wireless communication (5G), and smart power grids have emerged as applications with enormous expansion potential over the coming years and decades. Future self-driving vehicles, for instance, require massive amounts of computing power to process the input from cameras and sensors in real-time; and the necessary high-performance processors must be both reliable and power efficient.
The Demand for Higher-Quality Gases and Better Analytics
To meet the challenges of these new applications, the semiconductor industry’s International Roadmap for Devices and Systems (IRDS) outlines manufacturing quality as one key aspect; therefore, semiconductor device manufacturers are implementing more stringent control into all aspects of the manufacturing process, from the cleanroom environment and the wafer processing tools to the raw materials used for production, many of which are gases. Consequently, improved gas quality control is one of the most important measures that are employed by semiconductor fabs to increase yields and reduce failure rates.
With the need to monitor and ensure stricter and more consistent gas quality comes a demand for more sensitive and accurate analytical technologies. At the same time, speed of response has become more important as well, as fab operators rely heavily on real-time process control to
In many state-of-the-art semi fabs, Cavity Ring-Down Spectroscopy (CRDS) analyzers are the gold standard for ensuring quality of the major bulk gases that are used in the manufacturing process, which are typically N2, CDA, O2, H2, Ar, and He.