Trace Water Vapor Analysis Using Cavity Ring-down Spectroscopy, Oscillator Quartz Crystal and Impedance Sensor Technologies

Jun Feng and Mark Raynor

Matheson Tri-Gas Inc., Advanced Technology Center Longmont, Colorado 80501

mraynor@matheson-trigas.com

Presented at Pittcon 2009, Chicago, IL, Specialty Gas Session, Tuesday March 10, 2009

Overview of Presentation

- Introduction
- Objective
- Experimental Aspects
- Operating Principles
- Results comparing the three techniques
- Summary
- Conclusion and future developments

Introduction

Why Trace Water?

- Next generation of semiconductor devices requires high purity gases to meet performance criteria
- Trace water impurity measurement needed to meet purity specifications.
- H₂O detection is challenging at low ppb levels
 - Adsorptive properties of water
 - Reactivity and or corrosive properties of gases
 - Strong IR absorption of many matrix gas
- Various H₂O measurement approaches
 - Spectroscopic: FTIR, CRDS, TDLAS
 - Sensors: QCM, P_2O_5 cell, Al_2O_3 impedance
 - Other: APIMS, MS, ion mobility, chilled mirror hygrometry

Objective

- Investigate three techniques for H₂O detection in the concentration range of 0-100 ppb
 - Quartz crystal microbalance (Ametek 5800)
 - Cavity ring-down spectroscopy (Halo, Tiger Optics)
 - Al₂O₃ impedance sensor (Hygrotrace, GE Sensing)
- Performance evaluation for
 - Detection sensitivity
 - Linearity
 - Response time
 - Long term stability
 - Application in inert and hydride gases

Experimental Set-up

Manifold for trace water vapor measurement using

Span-pac H₂O generator, AMETEK 5800, CRDS and GE HygroTrace Sensor

Quartz Crystal Microbalance

Sensors based on resonating piezoelectric crystals, developed in the 1960s by researchers at ESSO Research and Engineering Co and Dupont Company.

AMETEK Inc and Shimadzu Corp. developed technology for water vapor detection in high-purity gases from ppb to ppm levels.

Sensors are coated with a hygroscopic polymer film to enhance the sensitivity for water sorption. Offers wide operating range and high detection sensitivity [1-4].

- 1. Sauerbrey, G., Z. Phys., 155, (1959) p 206
- 2. King, W. H.; Piezoelectric Sorption Detector Anal. Chem., 1964, 36 (9), pp 1735–1739
- 3. Guilbault, G.G: Jordan J.M Analytical uses of piezoelectric-crystals a review CRC Critical Rev Anal Chem 19, 1-28 (1988)
- 4. Feng, J.; Raynor, M.; Owens, M.; Trace Water Vapor Detection in Pure Arsine Gas Using Quartz Crystal Oscillator Technology, Pittcon 2007 Feb 25- Mar 02 2007, Chicago

Oscillator Quartz Crystal Analysis: Operating Principle

 $\Delta f = -C_m \Delta m$

 Δf – change in crystal resonance frequency (Hertz) is proportional to the change in the mass per unit surface area Δm in grams as a result of H₂O absorption

 C_m is a property of the crystal used based on fundamental resonance frequency, the surface area, density of the quartz and polymer properties at constant T and P

 Δf measurement relative to a reference cell compensates for temperature drifts.

By alternating flow of wet sample and dry reference gas over the crystal over a set interval, Δf due to H₂O absorption can be determined

$$\Delta f = (f_{sample} - f_{ref.crystal}) - (f_{drygas} - f_{ref.crystal})$$

A microprocessor stores the frequencies and based on the amount of accumulated H_2O during the sampling interval, calculates the H_2O concentration using a polynomial expression obtained from prior calibration.

Trace H₂O Addition into Ametek 5800

Ametek 5800: Response to Changes in Trace H₂O

Water vapor dry-down in N_2 : Ametek took 72 minutes to reach 95% of the final value for the step 49.8 – 23.2 ppb

Ametek 5800: Trace Water Vapor Measurement Stability Test in N₂

- Sensitivity is 2.4 ppb (average over 0-100 ppb range)
- Detection limit ~5 ppb in Nitrogen
- MDL dependent on dryness of the reference stream

Trace H₂O Analysis in Phosphine

Trace water vapor doping into dry PH₃ using Nanochem PHX purifier

- QCM technology shows capability for measuring $[H_2O]$ in gases such as PH₃, based on frequency difference of sample gas and reference gas line.
- Reference based method
- Issues observed with switching between N₂ and PH₃ references due to equilibrium of purifier
- Difficulties experienced with use of different reference matrix to sample matrix due molecular weight difference.
- Sensor lifetime also affected by gases such as phosphine

Cavity Ring-down Spectroscopy

- Cavity ring-down spectroscopy (CRDS) [1] developed since late 1980s.
- CRDS uses narrow-frequency, tunable laser diodes with ultra-high finesse optical cells to provide highly spectral resolution (0.0001 cm⁻¹)
- The high-reflectivity of the mirrors in the optical cavity results in an effective path length of over 40 km, which enables trace water vapor detection in nitrogen to ppt levels [2].
- Trace water measurements demonstrated in high-purity process gases, such as N₂, HCl, HBr, arsine and phosphine [3].

- 1. Okeefe, A Rev Sci. Instruments 59, 2544 (1988);
- Dudek JB, Tarsa PB, Velasquez A, Wladyslawski M, Rabinowitz, P, Lehmann KK Anal Chem 75, 4599-4605 (2003);
- 3. Feng J, Raynor M Chen Y, *Compound Semiconductor* 13, 31 (2007)

CRDS: Operating Principle

- Light is reflected by the mirrors, leaking out a tiny amount upon each reflection.
- Ring-down signal measured when the light is abruptly turned off. The decay
 constant increases when light is additionally absorbed by H₂O in the cavity
- Ring-down time of the sample, $\tau(\mathbf{v})$ is measured at a strong H₂O absorption line
- The reference ring-down time τ_0 is measured where there are no absorptions
- The H₂O concentration is calculated using:

$$1/\tau(v) - 1/\tau_0 = c s(v) N$$

where: c = speed of light

Ν

- s(v) = absorption cross section of molecules that absorbs light at frequency v
 - = number density (concentration)

Trace H₂O Step-Addition into CRDS

CRDS Response to Changes in Trace H₂O

Stability of H₂O Measurements

- Sensitivity is 1.4 ppb (average over 0-100 ppb range)
- Detection limit <2 ppb in Nitrogen

Trace H₂O Detection in PH₃ with CRDS MTO-LP

 H_2O has a strong absorption that is sufficiently removed from those of PH_3 to allow detection between 1300-1400 nm at 100 torr

Spectra opposite show: 120 ppb water in N_2 (Red); dry PH_3 (Blue); and 1.5 ppm water in PH_3 (Green)

Sensitivity is 1.3 ppb based on 3std dev of the intercept, for a weighted linear fit.

CRDS response is linear in measured range

Zero offset of 9 ppb is due to the overlapping of PH_3 and residual water background that cannot be distinguished.

Al₂O₃ Moisture Sensor

- Alumina first proposed for H₂O sensing in 1930s and applied in early 1950s [1-2].
- Based on the correlation of the capacitance / impedance with H₂O adsorption on an Al₂O₃ film. Offers wide measurement range, minimal effects of P and T.
- Technology traditionally suffers from slow response time [3] due to the intrinsic adsorption/desorption properties of this material

Taylor, H.S.; Gould,A.J. J. Am. Chem. Soc., 1934, 56 (8), 1685-1687
 Weaver, E. R. Anal. Chem., 1951, 23 (8), 1076-1080
 Basu, S. et.al., Sensor and Actuators B 79, 182-186 (2001)

18

New Development in Al₂O₃ Sensors

- Al₂O₃ based H₂O sensor with integrated heating element that periodically cycles the temperature developed by GE Sensing [1].
- A temperature pulse is applied to 'dry down' the sensor. Then the sensor is allowed to cool down and the H₂O measurement is made based on the wet-up slope and resulting change in impedance

- Z(f) = R(f) + jX(f)
 - Z: impedance; R: resistance; X: reactance; f: frequency

- 1. Kerney, J. New Method for Trace Moisture Measurement, Advances in Wafer Processing, SEMICON West, San Francisco, California, July 2007
- 2. Kerney J, ISA 53rd Analysis Division Symposium, Houston TX, 2008

GE HygroTrace Moisture Sensor

Trace H₂O Addition and Response of HygroTrace Sensor

Response of HygroTrace Al₂O₃ Sensor to changes in H₂O

Wet-up Test in PN₂ HygroTrace sensor took 13 min to reach 95% of the final value during the step from 15 ppb to 26 ppb

Dry-down Test in PN₂ HygroTrace Sensor took 108 min to reach 95% of the final value during the step from 107 ppb to 10 ppb

Stability of H₂O Measurements with HygroTrace Al₂O₃ Sensor

- Sensitivity is 1.8 ppb (average over 0-100 ppb range)
- Detection limit ~3 ppb* in Nitrogen (initial 3 months)
- After this DL increased to 10 ppb

Trace Water Vapor in Ultima PH₃ Cylinder Using HygroTrace Sensor

 Preliminary study shows trace H₂O detection feasibility of Hygrotrace Al₂O₃ sensor in PH₃ versus established CRDS method

Summary of Findings

Parameter	Ametek 5800 QCM	Halo CRDS	HygroTrace Al ₂ O ₃ Sensor
${f R^2}$ ([H ₂ O] _{measured} ~ [H ₂ O] _{added})	0.998	0.999	0.9985
Sensitivity (Average 3*StDev from 0-100ppb)	2.4	1.4	1.8
Detection limit ppb (in N ₂)	~ 5	< 2	~ 10
Wet-up ppb / min	(44.6 -> 55.4) / 47	(23 -> 34.6) / 15	(15 🔶 26) / 13
Dry-down ppb / min	(49.8 → 23.2) / 72	(664 → 10) / 8	(107 -> 10) / 108
Stability test / min	> 700	> 1000	> 900

Future Development Trends

Mass-based Sensors

- QCM based sensor: AMTEK moisture analyzer Model 5910 UHP has 100 pptv detection sensitivity and 150 pptv detection limit in inert gases [1];
- CNT mass-based sensor enable potentially ultra-high sensitivity of 10⁻²¹ g [2].

Laser Spectroscopy

 CRDS, prism CRDS, CEAS [3], and quantum cascade laser absorption [4] technologies

Electrical Impedance-based Sensor

- Carbon nanotubes may provide new solutions for trace water vapor detection and push sensitivity and detection limits to new levels for electrical impedance measurements.
- 1. http://www.ametekpi.com/moisture-analyzers/AMETEK-5910UHP-Moisture-Analyzer.pdf
- 2. Li, Y.; Qiu, X.M.; Yang, F. et.al.; Nanotechnology 19 (2008) 165502
- 3. Ye, J. et.al.; Science 311, 1595-1599(2006)
- 4. Provencal R, Gupta M, Owano TG, et al. Applied Optics 44,6712-6717(2005)

- Thank you for attending this presentation
- Please visit the Matheson Tri-Gas Booth in the Exhibition Hall (Booth # 1455) with any questions or for a hardcopy of the slides

