

REAL-TIME GAS ANALYZERS

APPLICATIONS BULLETIN

Advanced Analytical Solutions for Fuel Cell Hydrogen Analysis

The combined portfolio of Process Insights' powerful analytic instruments for analysis of fuel-cell-grade hydrogen offers:

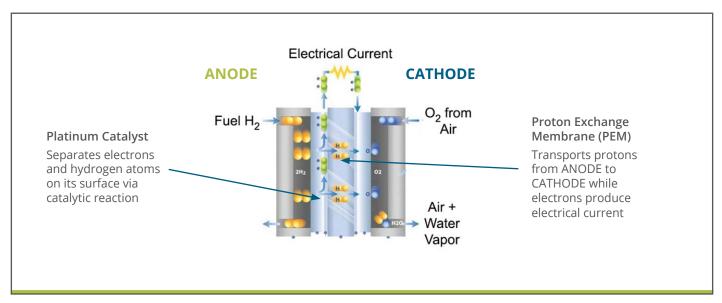
- Combination of three powerful analytical technologies: Cavity Ring-Down Spectroscopy (CRDS), Mass Spectrometry (MS) and Gas Chromatography (GC)
- Analysis of all critical contaminants listed in hydrogen purity standards SAE J2719 and ISO 14687: He, N₂, Ar, CH₄, H₂O, O₂, CO, CO₂, CH₂O, CH₂O₂, NH₃, HCl, sulfurs, and more
- Ideal detection limits from part-per-million (ppm) down to sub-part-per-billion (ppb) in line with requirements outlined in ISO 21087

The Easy Way to Ensure Hydrogen Quality

Hydrogen quality is vital for the performance and lifetime of hydrogen fuel cells. There are many critical contaminants for this application, causing many potential issues, including performance reduction, degradation of the proton exchange membrane, or damage to the catalyst. Process Insights offers powerful analytical tools for the measurement of trace amounts of these molecules. The instruments' ppm- and ppb-level detection limits help ensure compliance with SAE J2719, ISO 14687 and similar purity standards designed to protect fuel cell electric vehicles (FCEVs).

Based on powerful Cavity Ring-Down Spectroscopy (CRDS), all of ours analyzers are free of drift, guaranteeing consistent and reliable trace detection for fuel-cell-grade hydrogen in the lab and in the field. Highly specific to the target molecule, CRDS also eliminates cross-interferences. Plus, there is no need to perform costly and time-consuming zero and span calibrations, saving both time and money with continuous, online service.

Our high-performance CRDS analyzers are used in many demanding measurement applications from ultra-high purity electronic gases for semiconductor manufacturing to industrial and medical gases. We have been working for many years with regulators, researchers, and gas manufacturers to develop measurement solutions for fuel-cell hydrogen analysis. CRDS's versatility makes it possible to use the instruments both in the lab and directly at fueling station, and anywhere along the supply chain, from manufacturing to transportation.


Our quadrupole mass spectrometers (MS) are geared for ultimate performance and allow the detection of multiple contaminants within seconds. With decades of excellence in industrial automation and thousands of installations worldwide, our process mass spectrometers provide the rugged stability and ease-of-use necessary for continuous operation in demanding, mission-critical environments. Offering complete quantitative stream composition measurement, total application coverage, and low cost of ownership, we deliver performance specifications superior to other mass spectrometers and commercial process technologies.

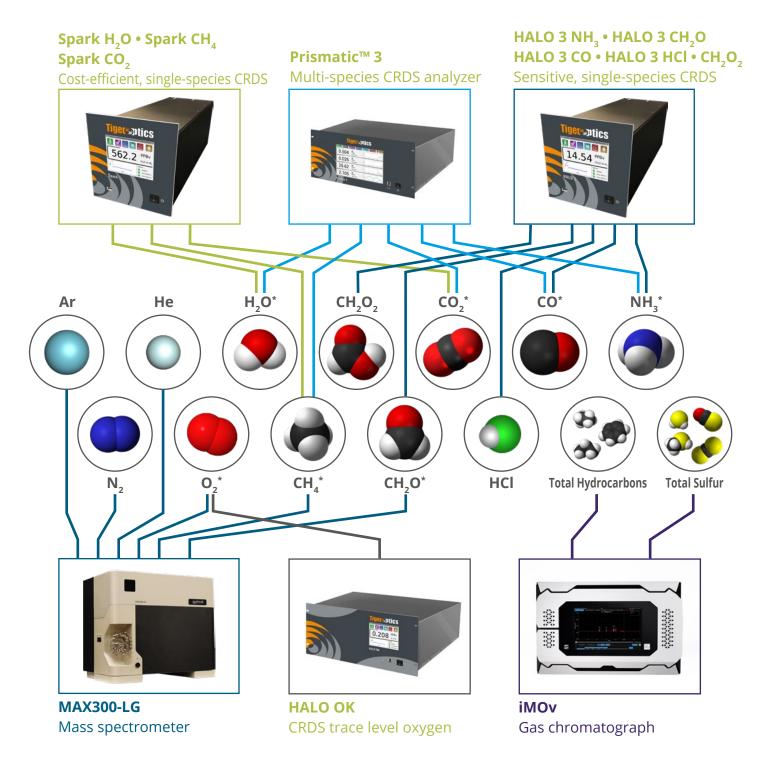
Based on cutting-edge quadrupole mass spectrometer technology, the MAX300-LG has the dynamic range to measure component concentrations from 100% down to the low parts per million (ppm). It provides a full composition update every few seconds to measure changes in dynamic chemical processes. The MAX300-LG has the flexibility and rugged stability necessary for real-time quantitative gas analysis in applications as diverse as catalysis R&D, ambient air monitoring, and bioreactor process control.

Fuel Cells and Hydrogen Purity

High-purity hydrogen is crucial to the performance and lifetime of fuel cells. The critical components of the fuel cell are the platinum catalyst and the proton exchange membrane (PEM). Both can experience significant loss in performance or even irreversible damage in the presence of contaminants on the anode side (hydrogen side) of the fuel cell.

Principle of a PEM Hydrogen Fuel Cell used in FCEVs

Effects of contaminants in Hydrogen on the Fuel Cell Anode

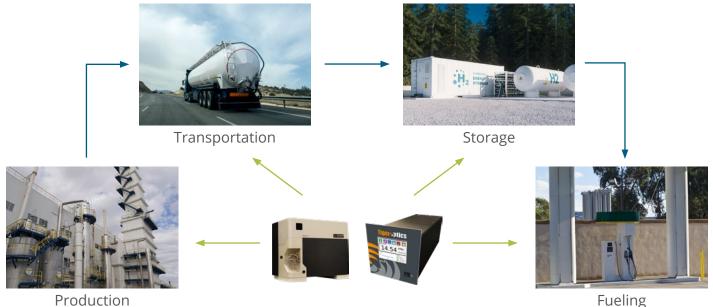

Helium (He), Nitrogen (N ₂), Argon (Ar)	Dilute hydrogen fuel, compromise performance
Methane (CH ₄), Hydrocarbons	Degrades performance of catalyst
Moisture (H ₂ O), Oxygen (O ₂)	Cathode-side molecule, impedes efficiency of fuel-cell reaction ($2H_2 + O_2 \rightarrow H_2O$)
Carbon Dioxide (CO ₂)	Reduces to CO and adsorbs to catalyst
Carbon Monoxide (CO)	Adsorbs onto catalyst and severely degrades performance, difficult to recover
Formaldehyde (CH ₂ O), Formic Acid (CH ₂ O ₂)	Reacts with catalysts, degrades performance
Ammonia (NH ₃)	Impedes conductivity of membrane, significantly affects performance, recoverable
Sulfur Compounds (H ₂ S, COS, CS ₂ ,)	Adsorbs onto catalyst and severely degrades performance, NOT recoverable

Hydrogen Purity and Measurement Standards

Most countries have adopted the fuel cell hydrogen purity standard SAE J2719, developed by the Society of Automotive Engineers, which sets limits for the species listed above, as well as several other critical contaminants. The purity specifications were also adopted by international standard ISO 14687. We have worked with ASTM International to create a standard test method for the analysis of fuel-cell hydrogen using CRDS to allow users to take advantage of this powerful analytical method for this application. The standard was finalized in 2014 and is designated as ASTM D7941/D7941M.

Products for Hydrogen Purity Analysis

Process Insights offers six different, versatile CRDS, MS and GC platforms for single-species or multi-species detection of critical impurities in fuel-cell-grade hydrogen to assure SAE J2719/ ISO 14687 compliance.



*For CH₄, NH₃, H₂O, O₂, CH₂O, CO and CO₂ detection, you can choose between dedicated single-species CRDS analyzers (Spark, HALO 3 and HALO OK) or the multi-species Prismatic 3 CRDS analyzer and MAX300-LG mass spectrometer. The recommended analyzer combination depends on your specific requirements. Please contact us to discuss your optimum solution.

Products for Hydrogen Purity Analysis

Process Insights' analyzers offer detection limits that are ideally suited for the contaminant limits set by SAE and ISO hydrogen purity standards and fulfill the requirements for analytical techniques outlined in ISO 21087. All Tiger Optics systems are also optimized for H₂ analysis according to ASTM Standard Test Method D7941/7941M.

Ensuring Contamination Control Throughout the Hydrogen Supply Chain

Production

Summary of SAE/ISO Requirements and Analyzer Detection Limits

Impurity	SAE J2719/ISO 14687 Concentration Limit	Process Insights LDL (3σ)	Process Insights Analyzer(s)
Helium (He)	300 ppm	1.0 ppm	MAX300-LG
Nitrogen (N ₂)	300 ppm	3.0 ppm	MAX300-LG
Argon (Ar)	300 ppm	1.0 ppm	MAX300-LG
Methane (CH_4)	100 ppm	0.2 ppm 0.1 ppm 1.0 ppm	Spark CH ₄ Prismatic 3 MAX300-LG
Moisture (H ₂ O)	5 ppm	0.0075 ppm 0.1 ppm	Spark H ₂ O Prismatic 3
Oxygen (O ₂)	5 ppm	0.003 ppm 0.5 ppm	HALO OK MAX300-LG
Carbon Dioxide (CO ₂)	2 ppm	0.4 ppm 0.32 ppm	Spark CO ₂ Prismatic 3
Carbon Monoxide (CO)	0.2 ppm	0.05 ppm 0.05 ppm	HALO 3 CO Prismatic 3
Formaldehyde (CH ₂ O)	0.2 ppm	0.006 ppm/0.02 ppm [†] 0.2 ppm	HALO 3 CH ₂ O [†] MAX300-LG
Formic Acid (CH ₂ O ₂)	0.2 ppm	N/A	CRDS*
Ammonia (NH ₃)	0.1 ppm	0.0004 ppm 0.0075 ppm	HALO 3 NH ₃ Prismatic 3
Total Hydrocarbons, ex. CH ₄	2 ppm	0.05 ppm	iMOv
Total Sulfur	0.004 ppm	0.002 ppm	iMOv
Hydrochloric Acid (HCl)	0.05 ppm [§]	0.001 ppm	HALO 3 HCI [†]

*In development, LDL TBD. [†]Can be combined into one system with higher LDL for CH₂O. [‡]Excellent vacuum required to achieve LDL. [§]SAE/ISO spec is for Total Halogens

Process Insights Total Integrated Solution

In the past, a complete monitoring solution for H_2 purity, which can cover all species listed in SAE J2719 or ISO 14687, involved a complex setup using as many as seven different analyzers from multiple providers, with no integration.

Introducing Process Insights' total solution: Only three analyzers are required, and these can be fully integrated into one single-provider system.

Process Insights TYPICAL Premium Insights Into Process TRADITIONAL TOTAL SOLUTION LAB SETUP CRDS **Prismatic 3** Multi-species CRDS H₀ analyzer CRDS NH čõ **FTIR** CO HALO 3 **CRDS** analyzer 7 Analyzers CH,O, HALO OK • 6 Analyzers **Electro-Chemical** Complex **CRDS** analyzer One solution solution \mathbf{O}_2 Multiple One provider providers • Fully integrated MAX300-LG CH Not integrated Mass spectrometer GC-PDHID He GC-FID GC-TCD Ň, Ar HALO 3 Dual-species CRDS HCI analyzer CRDS CH,O 8 9 iMOv Gas chromatograph GC-MS THC GC-PFPD َي 🌒 **``** Total Sulfur

Comparison: Traditional Lab Setup vs. Process Insights Total Solution

Spark H₂O • Spark CH₄ • Spark CO₂

CRDS Analyzers for Moisture, Methane and Carbon Dioxide

Performance

Operating range: Detection limit (LDL, 3σ/24h): SAE J2719/ISO 14687 Limit Precision (1σ, greater of): Accuracy (greater of): Speed of response: Environmental conditions: Storage temperature: See table below See table below ± 0.75% or 1/3 of LDL ± 4% or LDL < 3 minutes to 90% 10°C to 40°C 30% to 80% RH (non-condensing) -10°C to 50°C

Gas Handling System and Conditions

Wetted materials:	316L stainless steel, 10 Ra surface finish
Gas connections:	1/4" male VCR
Inlet pressure:	10 – 125 psig (1.7 – 9.6 bara)
Flow rate:	~0.7 slpm (gas dependent)
Sample gases:	Most inert, toxic, passive and corrosive matrices
Gas temperature:	Up to 60°C

Dimensions & Weight

Standard sensor:	H × W × D 8.73 × 8.57 × 23.6 in (222 × 218 × 599 mm)
Sensor rack (fits up to two sensors):	H × W × D 8.73 × 19.0 × 23.6 in (222 × 483 × 599 mm)
Standard sensor weight:	32 lbs (14.5 kg)

Electrical & Interfaces

Platform	Max Series analyzer
Alarm indicators:	2 user programmable, 1 system fault, Form C relays
Power requirements:	90 – 240 VAC, 50/60 Hz
Power consumption:	40 Watts max. per sensor
Signal output:	Isolated 4–20 mA per sensor
User interfaces:	5.7" LCD touchscreen. 10/100 Base-T Ethernet. USB, RS-232, RS-485. Modbus TCP (optional)
Data storage:	Internal or external flash drive
Certification:	CE Mark

Performance, H ₂	Part Number	Range	LDL (3σ)	SAE/ISO Limit
Spark H₂O	F7700	0 – 1750 ppm	7.5 ppb	5 ppm
Spark CH₄ (standard range)	F7701	0 – 80 ppm	7.5 ppb	100 ppm
Spark CH₄ (high range)	F7701-H	0 – 1000 ppm	200 ppb	100 ppm
Spark CO ₂	F7704	0 – 2000 ppm	400 ppb	2 ppm

HALO 3 NH₃ • HALO 3 CH₂O • HALO 3 CH₂O₂ • HALO 3 CO • HALO 3 HCI

CRDS Analyzers for Ammonia, Formaldehyde, Carbon Monoxide, Hydrochloric Acid and Formic Acid

Performance

Operating range:	See table below	HALO 3
Detection limit (LDL, 3σ/24h):	See table below	
SAE J2719/ISO 14687 Limit	See table below	
Precision (1σ, greater of):	± 0.75% or 1/3 of LDL	
Accuracy (greater of):	± 4% or LDL	
Speed of response:	< 3 minutes to 90%	
Environmental conditions:	10°C to 40°C 30% to 80% RH (non-condens	sing)
Storage temperature:	–10°C to 50°C	

Gas Handling System and Conditions

Wetted materials:	316L stainless steel, 10 Ra surface finish
Gas connections:	1/4" male VCR
Leak tested to:	1 x 10 ⁻⁹ mbar l / sec
Inlet pressure:	10 – 125 psig (1.7 – 9.6 bara)
Flow rate:	~1 slpm
Gas temperature:	Up to 60°C
Dimensions & Weight	
Cham dand as a second	

Standard sensor:
Sensor rack (fits up to two sensors):
Standard sensor weight:

H × W × D 8.73 × 8.57 × 23.6 in (222 × 218 × 599 mm) H × W × D 8.73 × 19.0 × 23.6 in (222 × 483 × 599 mm) 33 lbs (15 kg) for NH₃ and CH₂O, 28 lbs (12.7 kg) for CO

Electrical & Interfaces

Platform:	Max Series ana	lyzer		
Alarm indicators:	2 user program	mable, 1 system	fault, Form C rel	ays
Power requirements:	90 – 240 VAC, 5	0/60 Hz		
Power consumption:	40 Watts max.			
Signal output:	Isolated 4–20 m	nA per sensor		
User interfaces:	5.7" LCD touchs RS-485. Modbus		ise-T Ethernet. US	5B, RS-232,
Data storage:	Internal or exte	rnal flash drive		
	CE Mark			
Certification:	CE Mark			
Certification: Performance in H ₂	CE Mark Part Number	Range	LDL (3σ)	SAE/ISO Limit
		Range 0 – 6 ppm	LDL (3σ) 0.3 ppb	SAE/ISO Limit 0.1 ppm
Performance in H ₂	Part Number	U U		
Performance in H ₂ HALO 3 NH ₃ :	Part Number F7617	0 – 6 ppm	0.3 ppb	0.1 ppm
Performance in H_2 HALO 3 NH ₃ : HALO 3 CH ₂ O*:	Part Number F7617 F7618	0 – 6 ppm 0 – 40 ppm	0.3 ppb 6 ppb/20 ppb*	0.1 ppm 0.2 ppm
Performance in H_2 HALO 3 NH ₃ : HALO 3 CH ₂ O*: HALO 3 CO:	Part Number F7617 F7618 F7602	0 – 6 ppm 0 – 40 ppm 0 – 2500 ppm 0 – 10 ppm	0.3 ppb 6 ppb/20 ppb* 50 ppb	0.1 ppm 0.2 ppm 0.2 ppm

U.S. Patent # 7,277,177

*Also available as a combined dual-species analyzer with somewhat higher LDL.

HALO OK

CRDS Analyzer

Performance in H₂

Operating range:
Detection limit (LDL, 3σ/24h):
SAE J2719/ISO 14687 Limit
Precision (1 σ , greater of):
Accuracy (greater of):
Speed of response:
Environmental conditions:
Storage temperature:

Gas Handling System and Conditions

Wetted materials:
Gas connections:
Leak tested to:
Sample inlet pressure:
Sample flow rate:
Gas temperature:

316L stainless steel, 10 Ra surface finish 1/4" male VCR 1 x 10⁻⁹ mbar l / sec 10 – 125 psig (1.7 – 9.6 bara) 0.5 to 1.8 slpm (gas dependent) Up to 60°C

Dimensions & Weight

 Standard sensor:
 H × W × D 8.73 × 19.0 × 23.6 in (222 × 483 × 599 mm)

 Standard sensor weight:
 45 lbs (20.4 kg)

Electrical & Interfaces

Platform	Max Series analyzer
Alarm indicators:	2 user programmable, 1 system fault, Form C relays
Power requirements:	90 – 240 VAC, 50/60 Hz
Power consumption:	200 Watts max.
Signal output:	Isolated 4–20 mA
User interfaces:	5.7" LCD touchscreen. 10/100 Base-T Ethernet. USB, RS-232, RS-485. Modbus TCP (optional)
Data storage:	Internal or external flash drive
Certification:	CE Mark
Part Number:	F7502-H

U.S. Patent # 7,277,177 • U.S. Patent # 7,255,836

Prismatic[™] 3

Multi-Species Gas Analyzer

Performance

Operating range: Detection limit (LDL, 3σ/24h): Precision (1σ, greater of): Accuracy (greater of): Speed of response: Environmental conditions: Storage temperature: See table below See table below ± 0.75% or 1/3 of LDL ± 4% or LDL < 5 minutes to 95% (in 4

< 5 minutes to 95% (in 4-channel operation) 10°C to 40°C 30% to 80% RH (non-condensing) –10°C to 50°C

Gas Handling System and Conditions

Wetted materials:	316L stainless steel, 10 Ra surface finish		
Gas connections:	1/4" male VCR inlet and outlet		
Leak tested to:	1 x 10 ^{.9} mbar l / sec		
Inlet pressure:	10 – 125 psig (1.7 – 9.6 bara)		
Flow rate:	< 1 slpm (gas dependent)		
Sample gases:	Inert gases and hydrogen		
Gas temperature:	Up to 60°C		

Dimensions & Weight

Standard sensor:	H × W × D 8.73 × 19.0 × 23.6 in (222 × 483 × 599 mm)
Sensor rack:	19" rack-mountable (483 mm)
Standard sensor weight:	50 lbs (22.7 kg) estimated

Electrical & Interfaces

Alarm indicators:	1 user programmable per channel, 1 system fault, Form C relays
Power requirements:	90 – 240 VAC, 50/60 Hz
Power consumption:	300 Watts max.
Signal output:	Isolated 4–20 mA per sensor
User interfaces:	10.4" LCD touchscreen, 10/100 Base-T Ethernet, RS-232, RS-485
Data storage:	Internal or external flash drive

Performance in H ₂	Range	LDL (3σ)	SAE/ISO Limit
Methane (CH₄):	0 – 100 ppm	100 ppb	100 ppm
Moisture (H ₂ O):	0 – 25 ppm	100 ppb	5 ppm
Carbon Monoxide (CO):	0 – 500 ppm	50 ppb	0.2 ppm
Carbon Dioxide (CO ₂):	0 – 1000 ppm	320 ppb	2 ppm
Ammonia (NH₃):	0 – 5 ppm	7.5 ppb	0.1 ppm

Contact us for additional analytes and matrices. U.S. Patent # 7,277,177

MAX300-LG

Mass Spectrometer for He, N₂, Ar, CH₄, O₂, CH₂O & CH₂O₂

Performance

Operating range: Detection limit (LDL, 3σ/24h): SAE J2719/ISO 14687 Limit Precision (1σ): Stability (1σ): Analysis rate: Environmental conditions: See table below See table below ± 0.05% relative over 24 hours ± 0.5% relative over 30 days 0.4 sec per analyzed species 13°C to 27°C 0% to 90% RH (non-condensing) the Extrel

Analyzer:	1-3 year*
Roughing pump:	6-12 months*
Calibration interval:	3-12 months (manual or fully automated)
Filaments:	Two—one active, one spare with automated switchover

Dimensions & Weight

 Instrument:
 H × W × D 23.0 × 26.25 × 19.0 in (584 x 667 x 483 mm)

 with optional cart:
 H × W × D 53.75 x 38.25 x 24.0 in (1365 x 972 x 610 mm)

 Instrument weight (approx.):
 165 lbs (75 kg)

 Optional cart weight:
 40 lbs (18 kg)

Electrical & Interfaces

Power requirements:	110 VAC ±10% 60Hz, 10A circuit or 230 VAC ±10% 60Hz, 10A circuit
Power consumption:	700 Watts nominal
System control interfaces:	Ethernet, USB
External communication:	Ethernet, Modbus serial, Digital I/O, analog I/O, OPC
Software:	Questor5 Quantitation Software

Performance in H ₂	Range	LDL (3σ)	SAE/ISO Limit
Helium (He):	0 - 100%	1.0 ppm	300 ppm
Nitrogen (N ₂):	0 - 100%	3 ppm	300 ppm
Argon (Ar):	0 - 100%	1.0 ppm	300 ppm
Methane (CH₄):	0 - 100%	1.0 ppm	100 ppm
Oxygen (O ₂):	0 - 100%	0.5 ppm	5 ppm
Formaldehyde (CH ₂ O):	0 - 100%	0.2 ppm	0.2 ppm

iMOv

Gas Chromatograph for Total Hydrocarbons and Sulfur Compounds

Performance

Operating range: Detection limit (LDL): SAE J2719/ISO 14687 Limit See table below See table below

Instrument Configuration

Sample gas:	Hydrogen
Carrier gas:	Helium
Detectors:	Scalable enhanced plasma discharge detector (SePdd) Enhanced flame ionization detector (eFID)
Sample pressure:	5–15 psig
Carrier/actuation gas pressure:	90–100 psig / 60–80 psig
Gas connection:	LipLOK™ (backward compatible with double ferrule standard)
Chassis configuration:	19" rackmount or benchtop

Electrical & Interfaces

Power requirements:	120/220 VAC, 50/60 Hz
Standard I/Os:	RS-232, 1x digital input, 1x digital output, ethernet (remote control, lloT)
Optional I/Os:	Modbus, isolated 4-20 mA outputs, dry contact relays
User interface:	Embedded GC software with touchscreen interface
Compliance:	CE mark and ROHS

Performance in H ₂	Range	LDL (3σ)	SAE/ISO Limit
Total Hydrocarbons (THC):	0 – 20 ppm	50 ppb	2 ppm
Hydrogen Sulfide (H ₂ S):	0 – 1 ppm	2 ppb	4 ppb*
Carbonyl Sulfide (COS):	0 – 1 ppm	2 ppb	4 ppb*
Methyl Mercaptan (CH ₃ SH):	0 – 1 ppm	2 ppb	4 ppb*
Ethyl Mercaptan/Carbonyl Disulfide (C ₂ H ₅ SH/CS ₂):	0 – 1 ppm	2 ppb	4 ppb*
lsopropyl Mercaptan (C ₃ H ₈ S):	0 – 1 ppm	2 ppb	4 ppb*
Thiophene (C₄H₄S):	0 – 1 ppm	2 ppb	4 ppb*

*Limit is given as Total Sulfur

Advanced Spectroscopic Solutions for Fuel Cell Hydrogen Analysis

Process Insights Single-Species Systems

Process Insights Multi-Species Systems

References

ASTM Standard D7941/D7941M-23, "Standard Test Method for Hydrogen Purity Analysis Using a Continuous Wave Cavity Ring-Down Spectroscopy Analyzer," available from ASTM International, <u>http://www.astm.org/Standards/D7941.htm</u>

SAE J2719, "Hydrogen Fuel Quality for Fuel Cell Vehicles," available from the Society of Automotive Engineers, <u>https://www.sae.org/standards/content/j2719_202003/</u>

ISO 14687-2019, "Hydrogen fuel – Product specification," available from the International Organization for Standardization," <u>https://www.iso.org/standard/69539.html</u>

ISO 21087-2019, "Gas analysis – Analytical methods for hydrogen fuel – Proton exchange membrane (PEM) fuel cell applications for road vehicles," <u>https://www.iso.org/standard/69909.html</u>

GAIN REAL-TIME INSIGHT INTO YOUR PROCESS

Process Insights delivers premium analytical sensors, analyzers, instrumentation, software and solutions that are mission-critical to keep your operations, personnel, and the environment safe. Our commitment to customer satisfaction is evident through our diverse range of products, programs, and services, designed to accommodate various budgets and application needs.

CENTERS OF EXCELLENCE | PROVIDING PROVEN SOLUTIONS

Process Insights – The Americas

14400 Hollister Street, Suite 800B, Houston, TX 77066, USA +1 713 947 9591

Process Insights – EMEA

ATRICOM, Lyoner Strasse 15, 60528 Frankfurt, Germany +49 69 20436910

Process Insights – APAC

Wujiang Economic and Technology, Development Zone, No. 258 Yi He Road, 215200 Suzhou, Jiangsu Province, China +86 400 086 0106

For a complete range of products, applications, systems, and service options, please contact us at: info@process-insights.com

For a complete list of sales & manufacturing sites, please visit: https://www.process-insights.com/about-us/locations/

