

HALO KA Max offers:

- Available for detecting traces on moisture (H₂O), ammonia (NH₂), or methane (CH₄)
- Parts per trillion (ppt) detection capability in an array of gases
- Absolute measurement (freedom from calibration)
- Field proven lowest Cost of Ownership and ease of use

- Wide dynamic range over four orders of magnitude
- Unprecedented speed of response at sub-ppb levels
- Compact footprint (two HALO KA Max fit in a 19" rack)

Specifications

Performance

Operating range:See gas performance table on next pageDetection limit (LDL)*:See gas performance table on next page

Precision (1\sigma, greater of): \pm 0.75% or see tables on next page

Accuracy (greater of): $\pm 4\%$ or LDL

Speed of response: < 2 min to 95% (for H_2O/NH_2), < 1 min to 95% (for CH_4)

Environmental conditions: 10°C to 40°C, 30% to 80% RH (non-condensing)

Storage temperature: -10°C to 50°C

Gas Handling System and Conditions

Gas connections: 1/4" male VCR inlet and outlet

Leak tested to: 1 x 10⁻⁹ mbar l / sec

Inlet pressure: 10 - 125 psig (1.7 - 9.6 bara)Flow rate: $\sim 2 \text{ slpm in N}_2 \text{ (gas dependent)}$

Sample gases: See tables below

Gas temperature: Up to 60°C

Dimensions & Weight

Standard sensor: $H \times W \times D \ 8.73 \times 8.57 \times 23.6 \text{ in } (222 \times 218 \times 599 \text{ mm})$ **Sensor rack** (fits up to two sensors): $H \times W \times D \ 8.73 \times 19.0 \times 23.6 \text{ in } (222 \times 483 \times 599 \text{ mm})$

Standard sensor weight: 28 lbs (12.7 kg)
NH₃ sensor weight: 34 lbs (15.4 kg)

Electrical and Interfaces

Platform: Max Series analyzer

Alarm indicators: 2 user programmable, 1 system fault, Form C relays

Power requirements: 90 – 240 VAC, 50/60 Hz

Power consumption: 40 Watts max. **Signal output:** Isolated 4–20 mA

User interfaces: 5.7" LCD touchscreen, 10/100 Base-T Ethernet, USB, RS-232,

RS-485, Modbus TCP (optional)

Data storage: Internal or external flash drive

Certification: CE Mark

HALO	KA	Max	H_2O
Perfor	ma	nce,	H ₂ O

Range	LDL*,†	Precision (1σ) @ zero	
$0 - E_{nnm}$	100 nnt	10 ppt	

In Nitrogen:	0 – 5 ppm	100 ppt	40 ppt
In Helium:	0 – 1 ppm	100 ppt	10 ppt
In Argon:	0 – 2 ppm	100 ppt	20 ppt
In Hydrogen:	0 – 4 ppm	100 ppt	30 ppt
In Oxygen:	0 – 2.5 ppm	100 ppt	20 ppt
In Clean Dry Air (CDA):	0 – 4 ppm	100 ppt	30 ppt

In Clean Dry Air (CDA):

HALO KA Max NH₃ Performance, NH₃

Range LDL[†] (3σ/24h) Precision (1σ) @ zero

In Nitrogen: 0 – 7 ppm 100 ppt 40 ppt

HALO KA Max CH₄

Performance, CH ₄	Range	LDL [†] (3σ/24h)	Precision (1σ) @ zero
In Nitrogen:	0 – 8 ppm	500 ppt	200 ppt
In Helium:	0 – 5 ppm	400 ppt	140 ppt
In Argon:	0 – 7 ppm	450 ppt	150 ppt
In Hydrogen:	0 – 8 ppm	500 ppt	200 ppt
In Oxygen:	0 – 7 ppm	500 ppt	200 ppt

Contact us for additional analytes and matrices. U.S. Patent # 7,277,177

 $^{^*}$ The Detection limit (LDL) is defined as 3σ over 24 hours or the H_2O drydown limit, whichever is higher. † Lowest achievable impurity level is dependent upon the quality of the sample gas and the integrity of the sampling system.

GAIN REAL-TIME INSIGHT INTO YOUR PROCESS

Process Insights manufactures and delivers premium sensors, monitors, detectors, analyzers, instrumentation, and software that are mission-critical to keep your operations, personnel, and the environment safe – every day across the globe.

Get the most reliable, precision analytical technologies available on the market today. We will work to match your needs and budget, and provide the optimal, and most stable process analysis solution for your application.

CENTERS OF EXCELLENCE | PROVIDING PROVEN SOLUTIONS

Process Insights is committed to solving our customers' most complex analytical, process, and measurement challenges everyday.

Process Insights - The Americas

4140 World Houston Parkway Suite 180, Houston, TX 77032, USA +1 713 947 9591

Process Insights - EMEA

ATRICOM, Lyoner Strasse 15, 60528 Frankfurt, Germany +49 69 20436910

Process Insights - APAC

Wujiang Economic and Technology, Development Zone, No. 258 Yi He Road, 215200 Suzhou, Jiangsu Province, China +86 400 086 0106

For a complete range of products, applications, systems, and service options, please contact us at: info@process-insights.com

For a complete list of sales & manufacturing sites, please visit: https://www.process-insights.com/about-us/locations/

COSA Xentaur, Tiger Optics, Extrel, Alpha Omega Instruments, ATOM Instrument, MBW Calibration, MGA, Guided Wave, ANALECT and LAR TOC Leader are trademarks of Process Insights, Inc.

