

APPLICATION NOTE

T-I Max AMC

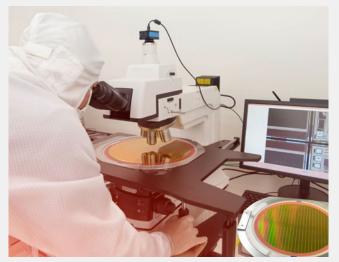
T-I Max

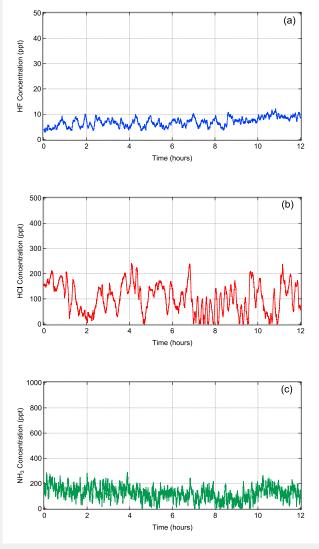
Next-Generation Monitoring of Airborne Molecular Contaminants in Cleanrooms

Airborne Molecular Contaminants in Cleanrooms

The dust-free and controlled environment of a cleanroom is vital to prevent product failure in semiconductor manufacturing, but controlling particulates in cleanrooms is not nearly sufficient to protect semiconductor devices that feature structural sizes on a molecular level. Microparticles are the main source of physical contamination, but modern filtration systems for air supply, cleanroom attire and specialized surface materials have been successful in keeping particle contamination under control. There are, however, molecular contaminants, which can range from small inorganic molecules like acids and bases, to more complex organic species like VOCs. These molecules are known to cause chemical contamination, i.e., they react with the materials and surfaces of the semiconductor devices to cause oxidation, unintended doping, dislocations, and more.

This class of contaminants is collectively known as Airborne Molecular Contaminants (AMCs). They are harder to control than particles. Firstly, the molecules are much smaller than particles and require more advanced chemical filtration of the cleanroom air. Secondly and more importantly, however, many AMCs are created within the cleanroom itself. For instance, HF is used for wafer cleaning within the process, and NH₃ is emitted naturally by any person present in the cleanroom.

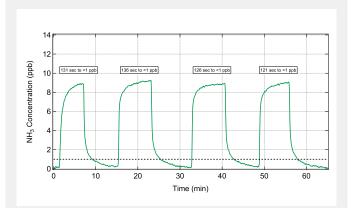



Fig. 1 Technician inspecting a silicon test wafer for potential damage

As feature sizes have decreased over the decades, both devices and equipment became more and more susceptible to significant damage from AMCs.¹ They can have various detrimental effects: Acids, such as HF or HCl, can cause micro-corrosion and accelerate oxidation. Bases, such as NH3, can cause hazing and attack coatings on the optics of UV lithography equipment. Hydrides, such as AsH₃, PH₃, or B₂H₆, can cause unintended doping, which can dramatically impact a devices functionality.

Monitoring AMCs is Key to Contamination Prevention

Because many AMCs are generated within the cleanroom, they cannot be completely avoided, even though wafers are shielded as much as possible from exposure nowadays, e.g., by transporting them in closed pods (FOUPs) between process steps. Precise monitoring of the cleanroom environment for these molecules has emerged as a key for semi fabs to further mitigate the threat of AMCs. By immediately detecting the presence of harmful molecules, engineering controls can be implemented to protect devices and processes from exposure. Due to the low concentration of AMCs and the need for fast detection, measurement instruments have to fulfill stringent requirements. As a result, ultra-sensitive laser-based analyzers have emerged as the primary class of instrument used to detect small AMCs, such as HF, HCl or NH₃. Semiconductor fabs require all of these molecules to be measured at levels below 1 part per billion (ppb) with a response of 1-3 minutes to any presence of molecules. More importantly, the instruments readings have to return to baseline as fast as possible after the molecules' presence is eliminated to minimize delays in the manufacturing process. The International Roadmap for Devices and Systems (IRDS) even calls out detection requirements below 0.1 ppb as part of the future technological challenges.¹


Introducing the T-I Max Next-Generation AMC Monitors

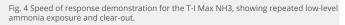

To address this challenge, we have developed the T-I Max series of cleanroom analyzers for detecting AMCs like HF, HCl, and NH_3 with unprecedented speed and sensitivity. The T-I Max (Figure 2 shows the NH_3 version) is based on our powerful Cavity Ring-Down Spectroscopy (CRDS) technology, but uses an all-new electronic and optical platform that enables lower measurement noise and up to ten times faster measurement rate. This platform takes CRDS to the next level and dramatically lowers detection limits compared to previous-generation analyzers.

Figure 3 shows typical baseline data of the T-I Max for HF, HCl, and NH₃. The detection limits vary somewhat for the different analytes, with the T-I Max HF capable of reaching single-digit parts-per-trillion (ppt) levels. But also the slightly less sensitive T-I Max HCl and T-I Max NH NH₃ 3 reach detection limits well below 1 ppb. In addition to improved sensitivity, increased measurement speed was a particular focus of the T-I Max development. The new electronics is one important factor in improving speed of response. Another one is an intelligent software that adjusts data filtering automatically to achieve low-noise data without compromising speed. But electronics and software alone cannot guarantee optimum speed of response; the sampling system inside the analyzer is even more critical.

Reducing Physical Speed Limitations

The main reason why laser-based analyzers work so well for this application is the fact that the measurement is contact-less. HF, HCl, and (particularly) NH₃ easily stick to surfaces. At ppb-levels, this surface interaction becomes the dominating limitation for achieving low baseline levels and fast speed of response. Even in optical analyzers, surfaces cannot be eliminated entirely. It is, therefore, important to limit surface interactions as much as possible. In the T-I Max, improved flow path, low-pressure operation, and optimized materials result in an analyzer that is able to meet the speed-of-response requirements of the most demanding customers.

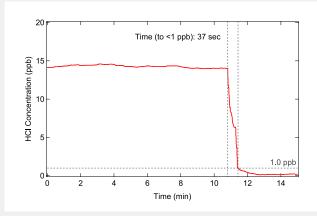
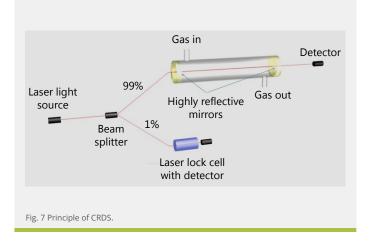


Figure 4 demonstrates this ability for $NH_{3'}$, the molecule with the most severe surface interaction. The measurement shows repeated low-level ammonia exposure with the goal to achieve NH_{3} clear-out to <1 ppb in under 3 min. The T-I Max NH_{3} masters this experiment with ease, dropping below the target mark consistently in just a little over 2 minutes. Even faster than the ammonia model is the T-I Max HCl. As seen in Figure 5, the clear-out time to <1 ppb from a 15-ppb HCl exposure is a mere 37 seconds.

These measurements demonstrate in impressive fashion the T-I Max's near-instant response at molecule concentrations that challenge any other, more traditional AMC monitoring technology.

Changing the AMC Monitoring Game


The capabilities of modern CRDS analyzers such as the T-I Max series allow semiconductor fabs to dramatically improve cleanroom AMC control. The analyzers' ppt-level sensitivity ensures that even the smallest release does not go unnoticed. Their real-time speed of response also allows the detection of the release before it can cause significant harm to any devices. Rather than tracking down causes of device failures after the fact, immediate action can be taken to prevent devices from being exposed to AMCs. Similarly, the fast return of the analyzer to its baseline after the AMC release is under control allows fabs to continue operation as soon as possible, preventing costly delays.

Another advantage of our AMC monitors is their ability to operate semi-mobile. While rack-mounted monitors are still most common, with fixed sampling points being manifolded into the system, T-I Max analyzers can be moved relatively easily to different places within the cleanroom to closely monitor critical environments, locations with potential for release (tools being cleaned, for instance), or to identify AMC sources. We also offer the GO-cart, a complete AMC monitoring system on wheels (see Figure 6) that can fit all three T-I Max models and a low-power, fanless vacuum pump. For convenience, a central touchscreen controls all three analyzers at once.

Cavity Ring-Down Spectroscopy

All our instruments are based on CRDS. The key components of the CRDS system are shown in Figure 7.

CRDS works by tuning laser light to a unique molecular fingerprint of the sample species. By measuring the time it takes the light to decay or "ring-down", you receive an accurate molecular count in milliseconds. The time of light decay, in essence, provides an exact, non-invasive, and rapid means to detect contaminants.

References

¹International Roadmap for Devices and Systems, 2017 Edition, Yield Enhancement, IEEE (2017).

GAIN REAL-TIME INSIGHT INTO YOUR PROCESS

Process Insights manufactures and delivers premium sensors, monitors, detectors, analyzers, instrumentation, and software that are mission-critical to keep your operations, personnel, and the environment safe – every day across the globe. Get the most reliable, precision analytical technologies available on the market today. We will work to match your needs and budget, and provide the optimal, and most stable process analysis solution for your application.

CENTERS OF EXCELLENCE | PROVIDING PROVEN SOLUTIONS

Process Insights is committed to solving our customers' most complex analytical, process, and measurement challenges everyday.

Process Insights – The Americas

4140 World Houston Parkway Suite 180, Houston, TX 77032, USA +1 713 947 9591

Process Insights – EMEA

ATRICOM, Lyoner Strasse 15, 60528 Frankfurt, Germany +49 69 20436910

Process Insights – APAC

Wujiang Economic and Technology, Development Zone, No. 258 Yi He Road, 215200 Suzhou, Jiangsu Province, China +86 400 086 0106

For a complete range of products, applications, systems, and service options, please contact us at: info@process-insights.com

For a complete list of sales & manufacturing sites, please visit: https://www.process-insights.com/about-us/locations/

COSA Xentaur, Tiger Optics, Extrel, Alpha Omega Instruments, ATOM Instrument, MBW Calibration, MGA, Guided Wave, ANALECT and LAR TOC Leader are trademarks of Process Insights, Inc.

www.process-insights.com Copyright © 2023 Process Insights, Inc. All Rights Reserved.