Food & Beverage

ANALYTICAL SOLUTIONS FOR FOOD & BEVERAGE Applications

Continuous monitoring to improve yield / quality and reduce waste and protect active Pharmaceutical Ingredients (API) and biomolecule production is vital in food and beverage production.  Our portfolio delivers monitoring solutions for fermenter bioreactor off-gas composition analysis to fast and accurate analysis for control parameters such as Oxygen Uptake Rate (OUR), Carbon dioxide Evolution Rate (CER), Respiratory Quotient (RQ) and fermentation end point.  Beverage and fill gas quality, process control and compliance and trace gas analysis for H2O, O2, CH4, CO2, CO, C2H2, and more, from ppb to % level detection capability can be easily achieved with our high-performing range of CRDS gas analyzers.  Real-time, inline process control and quality analysis for milk, cream, butter, cheese, lactose, yogurt, and dairy products and precise control of fat, protein and sugar concentrations in standardized milk and liquid end products relies on our FT-NIR, NIR, FTIR analyzers and probes.  Explore our full Spectrum NIR Laboratory Spectrometer for multi-parameter milk and dairy process development and product quality analysis.

Process Insights:  We are revolutionizing measurement everywhere!

our food & beverage solutions flyer

Fermentation, Brewing & Cell Cultures

The fermentation process is used for the production of biomass, enzymes, chemicals and pharmaceuticals. Cell types used in these culture processes were traditionally yeasts, fungi and bacteria.  Fermentation is a process breaks down large organic molecules via the action of microorganisms into simpler ones like yeast enzymes converting sugars and starches into alcohol, while proteins are converted to peptides/amino acids.  It is important to reduce production costs and optimize yields by improving fermentation conditions.  

We can provide fast and accurate analysis for control with our MGA™ 1200CS for Oxygen Uptake Rate (OUR), Carbon Dioxide Evolution Rate (CER), Respiratory Quotient (RQ) and fermentation end point.  As well as easily monitor fermenter bioreactor off-gas composition analysis with our quadrupole mass spectrometer, EXTREL™ MAX300-LG.

MGA 1200CS BENEFITS

  • Accurate OUR and CER to track batch trajectory
  • Note mammalian cell cultures are typically OUR only due to pulsed input of CO2
  • Precise measurement of RQ during both growth and productive phases of microbial fermentation
  • Ensures viable cell density is achieved prior to transition to productive phase
  • Monitor important indicators of limiting conditions
  • Report DO2 probe drift c/o oxygen mass transfer (Kla)
  • Low maintenance

MGA 1200CS ELECTRONICS

  • Standard SE Control components widely available
  • Standard PSU modules widely available
  • Future-proof architecture
  • Internal Modbus/Ethernet communications
  • Available OPC-UA, Profibus & HART comms
  • Extensive diagnostics stored on-board
  • Only one proprietary board

OTHER Applications

SERVICE | SALES | TRAINING

Americas +1 713.947.9591
EMEA +49 69 20436910
China/APAC +86 400 086 0106

info@process-insights.com

Pure Gas, Beverage Gas & Gas Blends

The Food Modernization Act (FMA) of 2011 shifted the focus for food manufacturers from reacting to foodborne illness and contamination to prevention.  A common cause of food spoilage is oxidation. Manufacturers must preserve the integrity and appearance of food, preventing contamination throughout transportation and distribution – from packaging and shipping to the point of sale and consumption.  Oxidation is when oxygen comes in contact with food, creating a chemical reaction and altering the molecular structure of a substance.  Nitrogen, oxygen, and carbon dioxide are used alone or in blended mixtures to extend product shelf life of food. Gases can help prevent discoloration and provide an added barrier against the spoilage.

Food-Grade Nitrogen and Beverage Grade Nitrogen is commonly used in different steps of food/beverage production, packaging, and storage.  Nitrogen in food packaging and processing is used to preserve the shelf life of processed food/drinks by eliminating food oxidants, preserving flavor, and preventing spoilage.  Nitrogen is used for Modified Atmosphere Packaging (MAP).  Nitrogen packaging preserves the food’s nutritional value, texture, flavor, aroma and taste.

Nitrogen is used in the winemaking process is to remove and prevent oxygen from coming into contact with the wine.  Nitrogen is used to prevent oxidation.

CO2 is most commonly known for carbonating beverages and creating dry ice in the beverage industry.

  • Beverage and fill gas quality, process control and compliance
  • Trace analyzers for H2O, O2, CH4, CO2, CO, C2H2, and more, from ppb to % level detection capability

Facility, Safety & Compliance

  • Oxygen safety monitoring
  • Quality of process gas supplies (CDA, N2, CO2, etc.)
  • Online and/or remote moisture sensor calibration and control
  • ppb to 100% moisture measurement 0-25% O2

SAFETY MONITORING Flyer

Process Water, Pure Water & Wastewater Analysis

A reliable, high quality water supply is essential to dairy farms. Water is used for animal consumption, milk cooling, cleaning and sanitizing equipment, cow cooling, irrigating crops, producing value added products, moving manure and cleaning the barns.  For US produced dairy, an eight-fluid ounce glass of milk has an average water footprint of 50 gallons (188 liters), while the more oft-consumed cheese has a water footprint of 119 gallons (450 liters) per four ounces. 

Dairy wastewater (water used to clean milking equipment and cows) can contaminate both groundwater and surface water. The wastewater can contain residual milk (i.e. milk that remains in the pipeline and milking units), bacteria, cleaning particulates, and other organic material.  

  • On-line water quality analysis for Total Organic Carbon, Chemical Oxygen Demand, and Biological Oxygen Demand 
  • Water influent and effluent discharge control for environmental compliance
  • Water For Injection (WFI)
  • Monitor return/boiler water quality to prevent system corrosion
  • Palm oil processing TOC
  • Saccharine and trace organics in water (ppm level)

Dairy Solution Flyer

Milk & Dairy Production

Milk quality analysis test mainly includes a density test, fat content test, total dry-extract, non-fat dry extract, cryoscopy, and acidity tests.  Milk and dairy testing methods include taste, smell, and visual observation (organoleptic tests); infrared spectrometry, indicator organisms, density meter or lactometer tests to measure the specific density of milk; clot-on-boiling testing to determine whether the milk is sour or abnormal.

  • Real-time, inline process control and quality analysis for milk, cream, butter, cheese, lactose, yogurt, and dairy products
  • Precise control of fat, protein and sugar concentrations in standardized milk and liquid end products
  • Powdered milk dryer control
  • Moisture and solid content ratios in cheese, yogurt, and butter
  • Dairy sample probes with sanitary tri clamp flange

Dryers & End Point Determination

Drying is a vital unit operation in food processing. The end point of drying is a critical process linked to the final product quality. Air humidity and moisture content impacts product quality.  Accurate endpoint determination to improve product yield and production efficiency, and minimize waste is very important.  Too much moisture in the food product can cause condensation resulting in damage to the processing machinery.  This can lead to corrosion or blockages, unplanned downtime, and loss of profits. This can slow down production and can increase the cost of production due to wasted hours.  Configuration should be easy to switch between multiple drying chambers, even if different solvents are present.  Our portfolio of high-performance trace moisture analyzers and multi-species analyzer monitor solvents, including IPA, MEK, DCM, ethyl acetate, styrene, acetonitrile, etc.  Moisture analysis is essential to the food industry to control food quality and shelf-life.

  • Accurate endpoint determination to improve product yield and production efficiency, and minimize waste
  • Configured to easily switch between multiple drying chambers, even if different solvents are present
  • Optimized sampling for ambient pressures, vacuum drying, and lyophilization
  • Trace moisture analysis and multi-species analysis of solvents, including IPA, MEK, DCM, ethyl acetate, styrene, acetonitrile, etc.
To Top

Questions? We’re here to help.