Skip to main content

Tag: Alpha Omega

News related to the brand Alpha Omega

Industrial Growth Partners Acquires Process Insights

Industrial Growth Partners Acquires Process Insights


INDUSTRIAL GROWTH PARTNERS ACQUIRES PROCESS INSIGHTS

San Francisco, CA – Industrial Growth Partners (“IGP”), in partnership with management, has acquired Process Insights, Inc. (“Process Insights” or the “Company”) from Union Park Capital.

With global operations across North America, Europe and Asia, Process Insights designs and manufactures analytical instrumentation used to provide compositional analysis and measure contaminants within gases and liquids in demanding and high cost-of-failure applications. The Company provides a broad portfolio of analytical technologies for in-line, on-line and at-line testing, including optical spectroscopy, mass spectroscopy, chilled mirror / hygrometry and electrochemical technologies. Process Insights’ products provide real-time, tight-tolerance speciation and analysis, enabling its customers to enhance process efficiency, ensure safety and maintain environmental and regulatory compliance. Process Insights’ products serve a broad range of end markets including semiconductor, renewable / alternative energy, life sciences, chemical, environmental monitoring, agriculture, food & beverage, general industrial, labs & research, and water & wastewater.

“We are excited to partner with IGP and leverage their resources for strategic and operational support as we embark on our next phase of growth,” commented Monte Hammouri, CEO of Process Insights. “IGP’s decades of industrial sector expertise, and specifically its track record with test & measurement businesses, stood out to the full management team as a true differentiator. We are confident that with IGP’s support, we will continue to grow Process Insights into a global leader of process instrumentation.”

Acquisition Details. On July 18, 2023, Industrial Growth Partners VI, L.P., in partnership with management and certain other co-investors, acquired Process Insights, marking the fourth platform investment for IGP’s sixth fund. The transaction creates a platform for Process Insights to accelerate its growth by aggressively pursuing its strategic initiatives, including pursuing additional add-on acquisitions. The acquisition of Process Insights is an ideal fit with IGP’s strategy of investing in niche industrial companies with leading market positions, significant growth opportunities and outstanding management teams. To learn more about Process Insights, please visit www.process-insights.com.

William Blair & Company, LLC served as the exclusive financial advisor to IGP in connection with the transaction.

Industrial Growth Partners, founded in 1997, is a San Francisco-based specialist private investment partnership investing exclusively in middle-market companies in the industrial sector in partnership with management teams.

For more information, please contact John Malloy, Jeff Webb or Sam Adler.

(415) 882-4550

www.igpequity.com

Continue reading

Select the Right Oxygen Deficiency Monitor for Your Application

When selecting your oxygen analyzer, there many factors to consider for your critical process application.

Oxygen Sensor Types

Today’s oxygen analyzers use one of a several types of oxygen sensors.  As industrial process applications call for improved measurement accuracy and repeatability, users are also demanding analyzers that require a minimum of maintenance and calibration. Users of oxygen analyzers are encouraged to evaluate the merits of a particular oxygen sensor type in context to the application for which it is intended. There is no one universal oxygen sensor type.

The synoptic review of the various gas phase oxygen sensors provided below should be used in conjunction with information gathered from manufacturers of oxygen analyzers. This combination will help to ensure the selection of the right sensor type for the application under consideration.

  • Ambient Temperature Electrochemical Oxygen Sensors
  • Paramagnetic Oxygen Sensors
  • Polarographic Oxygen Sensors
  • Zirconium Oxide Oxygen Sensors

Ambient Temperature Electrochemical Oxygen Sensors

The ambient temperature electrochemical sensor, often referred to as a galvanic sensor, is typically a small, partially sealed, cylindrical device (1-1/4” diameter by 0.75” height) that contains two dissimilar electrodes immersed in an aqueous electrolyte, commonly potassium hydroxide. As oxygen molecules diffuse through a semi-permeable membrane installed on one side of the sensor, the oxygen molecules are reduced at the cathode to form a positively charge hydroxyl ion. The hydroxyl ion migrates to the sensor anode where an oxidation reaction takes place.

The resultant reduction/oxidation reaction generates an electrical current proportional to the oxygen concentration in the sample gas. The current generated is both measured and conditioned with external electronics and displayed on a digital panel meter either in percent or parts per million concentrations.

With the advance in mechanical designs, refinements in electrode materials, and enhanced electrolyte formulations, the galvanic oxygen sensor provides extended life over earlier versions and are recognized for their accuracy in both the percent and traces oxygen ranges. Response times have also been improved.

major limitation of ambient temperature electrochemical sensors is their susceptibility to damage when used with samples containing acid gas species such as hydrogen sulfide, hydrogen chloride, sulfur dioxide, etc. Unless the offending gas constituent is scrubbed prior to analysis, their presence will greatly shorten the life of the sensor. The galvanic sensor is also susceptible to over pressurization. For applications where the sample pressure is > 5 psig, a pressure regulator or control valve is normally recommended.

Paramagnetic Oxygen Sensors

Within this category, the magnetodynamic or “dumbbell” type of design is the predominate sensor type. Oxygen has a relatively high magnetic susceptibility as compared to other gases such as nitrogen, helium, argon, etc. and displays a paramagnetic behavior. The paramagnetic oxygen sensor consists of a cylindrical shaped container inside of which is placed a small glass dumbbell.

The dumbbell is filled with an inert gas such as nitrogen and suspended on a taut platinum wire within a non-uniform magnetic field. The dumbbell is designed to move freely as it is suspended from the wire. When a sample gas containing oxygen is processed through the sensor, the oxygen molecules are attracted to the stronger of the two magnetic fields. This causes a displacement of the dumbbell which results in the dumbbell rotating.

A precision optical system consisting of a light source, photodiode, and amplifier circuit is used to measure the degree of rotation of the dumbbell. In some paramagnetic oxygen sensor designs, an opposing current is applied to restore the dumbbell to its normal position. The current required to maintain the dumbbell in its normal state is directly proportional to the partial pressure of oxygen and is represented electronically in percent oxygen.

There are design variations associated with the various manufacturers of magnetodynamic paramagnetic oxygen sensors. Also, other types of sensors have been developed that use the susceptibility of oxygen to a magnetic field which include the thermomagnetic or `magnetic wind’ type and the magnetopneumatic sensor.  In general, paramagnetic oxygen sensors offer very good response time characteristics and use no consumable parts, making sensor life, under normal conditions, quite good. It also offers excellent precision over a range of 1% to 100% oxygen.

The magnetodynamic sensor is quite delicate and is sensitive to vibration and/or position. Due to the loss in measurement sensitivity, in general, the paramagnetic oxygen sensor is not recommended for trace oxygen measurements. Other gases that exhibit a magnetic susceptibility can produce sizeable measurement errors. Manufactures of paramagnetic oxygen sensors and analyzers should provide details on these interfering gases.

Polarographic Oxygen Sensors

The polarographic oxygen sensor is often referred to as a Clark Cell [J. L. Clark (1822- 1898)]. In this type of sensor, both the anode (typically silver) and cathode (typically gold) are immersed in an aqueous electrolyte of potassium chloride. The electrodes are separated from the sample by a semi-permeable membrane that provides the mechanism to diffuse oxygen into the sensor.

The silver anode is typically held at a potential of 0.8V (polarizing voltage) with respect to the gold cathode. Molecular oxygen is consumed electrochemically with an accompanying flow of electrical current directly proportional to the oxygen concentration based on Faraday’s law. The current output generated from the sensor is measured and amplified electronically to provide a percent oxygen measurement.

One of the advantages of the polarographic oxygen sensor is that while inoperative, there is no consumption of the electrode (anode). Storage times are almost indefinite. Like the galvanic oxygen sensor, they are not position sensitive. Because of the unique design of the polarographic oxygen sensor, it is the sensor of choice for dissolved oxygen measurements in liquids. For gas phase oxygen measurements, the polarographic oxygen sensor is suitable for percent level oxygen measurements only. The relatively high sensor replacement frequency is another potential drawback, as is the issue of maintaining the sensor membrane and electrolyte.

A variant to the polarographic Oxygen Sensor is what some manufacturers refer to as a non-depleting coulometric sensor where two similar electrodes are immersed in an electrolyte consisting of potassium hydroxide. Typically, an external EMF of 1.3 VDC is applied across both electrodes which acts as the driving mechanism for reduction/oxidation reaction.  The electrical current resulting from this reaction is directly proportional to the oxygen concentration in the sample gas. As is the case with other sensor types, the signal derived from the sensor is amplified and conditioned prior to displaying.

Unlike the conventional polarographic oxygen sensor, this type of sensor can be used for both percent and trace oxygen measurements. However, unlike the zirconium oxide, one sensor cannot be used to measure both high percentage levels as well as trace concentrations of oxygen. One major advantage of this sensor type is its ability to measure parts per billion levels of oxygen. The sensors are position sensitive and replacement costs are quite expensive, in some cases, paralleling that of an entire analyzer of another sensor type. They are not recommended for applications where oxygen concentrations exceed 25%.

Zirconium Oxide Oxygen Sensors

This type of sensor is occasionally referred to as the “high temperature” electrochemical sensor and is based on the Nernst principle [W. H. Nernst (1864-1941)]. Zirconium oxide sensors use a solid-state electrolyte typically fabricated from zirconium oxide stabilized with yttrium oxide. The zirconium oxide probe is plated on opposing sides with platinum which serves as the sensor electrodes.

For a zirconium oxide sensor to operate properly, it must be heated to approximately 650 degrees centigrade. At this temperature, on a molecular basis, the zirconium lattice becomes porous, allowing the movement of oxygen ions from a higher concentration of oxygen to a lower one, based on the partial pressure of oxygen. To create this partial pressure differential, one electrode is usually exposed to air (20.9% oxygen) while the other electrode is exposed to the sample gas.

The movement of oxygen ions across the zirconium oxide produces a voltage between the two electrodes, the magnitude of which is based on the oxygen partial pressure differential created by the reference gas and sample gas. The zirconium oxide oxygen sensor exhibits excellent response time characteristics. Another virtue is that the same sensor can be used to measure 100% oxygen, as well as parts per billion concentrations.

Due to the high temperatures of operation, the life of the sensor can be shortened by on/off operation. The coefficients of expansions associated with the materials of construction are such that the constant heating and cooling often causes “sensor fatigue”.  A major limitation of zirconium oxide oxygen sensors is their unsuitability for trace oxygen measurements when reducing gases (hydrocarbons of any species, hydrogen, and carbon monoxide) are present in the sample gas. At operating temperatures of 650 degrees centigrade, the reducing gases will react with the oxygen, consuming it prior to measurement thus producing a lower than actual oxygen reading. The magnitude of the error is proportional to the concentration of reducing gas.  Zirconium oxide oxygen sensors are the “defacto standard” for in-situ combustion control applications.

Other types of oxygen measuring techniques are under development and in some cases being used for specific applications. They include, but are not limited to, luminescence polarization, opto-chemical sensors, laser gas sensors, et al. As these techniques are further developed and improved, they may represent viable alternatives to the major oxygen sensor types currently in use.

Compare Oxygen Deficiency Monitors

Like most things in life, not all oxygen deficiency monitors are the same. There are significant differences in automobiles, lawn mowers, cell phones, as well as in oxygen deficiency monitors.

A number of oxygen moni­tors use what’s referred to as “fuel cell” oxygen sensors. Fuel cell oxygen sensors typically require replace­ment every 10-14 months. But that’s only half of the problem. The issue is that as fuel cell sensors age, their respective electrical outputs diminish over time (similar to a flashlight battery). This reduction in out­put mimics a low oxygen signal to the electronics. If the drop in output is significant enough, it will result in a false low oxygen alarm. Typically, with the first few false low oxygen alarms, the reaction by personnel is to treat them as actual low oxygen alarms and clear the areas in question. As these false low oxygen alarms increase in frequency, it often leads to frustration on the part of personnel, and may create a po­tentially dangerous scenario. Employees begin cancelling the audible alarms assuming they are false, when in fact they may be real low oxygen events. Cases have been documented where employees have gone as far as to permanently disable the monitor’s audible alarms due to the “nuisance factor”. Is it worth taking the risk with fuel cell oxygen sensors?

Frequent exaggerations are being made on the part of certain suppliers of zirconium oxide based oxygen deficiency monitors. Claims that the zirconium oxide sensors are calibration free for 10 years plus! One should ask why aren’t these same manufacturers offering a 10 year sensor warranty? Ironically, one of the major Japanese suppliers of the actual zirconium oxide sensor used in many of these monitors makes no such spurious claims. Upon closer examination, customers find a much different story is told when they read the instruction manual for many of these zirconium oxide oxygen monitors. One manual states, “as the oxygen sensor ages over time, it may require adjustment to 20.9%. The 02 monitor also requires pe­riodic testing with nitrogen to verify the cells response to 0% oxygen”. The manual goes on to detail how to make the adjustments (AKA calibration) to the monitor. As the old adage says, “if it sounds too good to be true, it probably is”. Trained safety personnel both understand and agree that gas monitors used to help protect personnel require occasional checks. The stakes are significant.

CAPABILITIES

Series 1300 Oxygen
Deficiency Monitor
Fuel Cell Oxygen Monitor
High Temperature (450 °C) Zirconium Oxide Oxygen Monitor
Three-year warranty on both the electronics and      sensor

YES

NO – Typically one year

NO – Typically two years

Accepts up to 3 oxygen sensors with one set of electronics drastically reducing the per point monitoring costs

 

YES

NO

NO

Built-In data logger standard

YES

NO

Limited Availability

Easy field replacement of the oxygen sensor

YES

YES

NO – Both sensor and mating electronics need replacement – an expensive repair

Built in alarm relay contacts

YES (4 Standard)

Some at extra charge

Often an extra charge

Can be affected by changes in ambient air now caused by HVAC / air handling systems

NO

NO

YES – Changes in airflow may sufficiently cool the high temperature sensor producing erroneous oxygen readings.

Can be used in the presence of combustible gases, refrigerant gases, other reducing gases

YES

YES

NO

Long-life oxygen sensor

YES

NO

Can fail prematurely from heat fatigue

Know the Difference Between Oxygen Monitor Sensors

KNOW THE DIFFERENCE BETWEEN OXYGEN MONITOR SENSORS

Do you know the difference between oxygen monitor sensors?  Oxygen analyzers use one of a several types of oxygen sensors.   As industrial process applications call for improved measurement accuracy and repeatability, users are demanding analyzers that require a minimum of maintenance and calibration.   There is no one universal oxygen sensor type.

AMBIENT TEMPERATURE ELECTROCHEMICAL SENSOR

  • Often referred to as a galvanic sensor, is typically a small, partially sealed, cylindrical device (1-1/4” diameter by 0.75” height) that contains two dissimilar electrodes immersed in an aqueous electrolyte, commonly potassium hydroxide.
  • Refinements in electrode materials, and enhanced electrolyte formulations, the galvanic oxygen sensor provides extended life over earlier versions and are recognized for their accuracy in both the percent and traces oxygen ranges.
  • Response times have also been improved.
  • They are easy to damage when used with samples containing acid gas species such as hydrogen sulfide, hydrogen chloride, sulfur dioxide, etc.

PARAMAGNETIC OXYGEN SENSORS

  • This is the magnetodynamic or `dumbbell’ type of design and is the predominate sensor type.
  • The paramagnetic oxygen sensor consists of a cylindrical shaped container inside of which is placed a small glass dumbbell.  The dumbbell is filled with an inert gas such as nitrogen and suspended on a taut platinum wire within a non-uniform magnetic field.
  • A precision optical system consisting of a light source, photodiode, and amplifier circuit is used to measure the degree of rotation of the dumbbell.
  • Some paramagnetic oxygen sensor designs, have an opposing current is applied to restore the dumbbell to its normal position.
  • In general, paramagnetic oxygen sensors offer very good response time characteristics and use no consumable parts, making sensor life, under normal conditions, quite good.
  • Offers excellent precision over a range of 1% to 100% oxygen.
  • They are quite delicate and sensitive to vibration and/or position.
  • Due to the loss in measurement sensitivity, in general, the paramagnetic oxygen sensor is not recommended for trace oxygen measurements.

POLAROGRAPHIC OXYGEN SENSORS

  • Often referred to as a Clark Cell [J. L. Clark (1822- 1898)].
  • This sensor, both the anode (typically silver) and cathode (typically gold) are immersed in an aqueous electrolyte of potassium chloride.
  • The electrodes are separated from the sample by a semi-permeable membrane that provides the mechanism to diffuse oxygen into the sensor.
  • The current output generated from the sensor is measured and amplified electronically to provide a percent oxygen measurement.
  • An advantage of the polarographic oxygen sensor is that while inoperative, there is no consumption of the electrode (anode).
  • Storage times are almost indefinite. Similar to the galvanic oxygen sensor, they are not position sensitive.
  • One major advantage of this sensor type is its ability to measure parts per billion levels of oxygen.
  • The sensors are position sensitive and replacement costs are quite expensive, in some cases, paralleling that of an entire analyzer of another sensor type.
  • Not recommended for applications where oxygen concentrations exceed 25%.

ZIRCONIUM OXIDE OXYGEN SENSORS

  • This sensor is referred to as the “high temperature” electrochemical sensor and is based on the Nernst principle [W. H. Nernst (1864-1941)].
  • Zirconium oxide sensors use a solid-state electrolyte typically fabricated from zirconium oxide stabilized with yttrium oxide. The zirconium oxide probe is plated on opposing sides with platinum which serves as the sensor electrodes.
  • The zirconium oxide oxygen sensor has excellent response time characteristics.
  • The same sensor can be used to measure 100% oxygen, as well as parts per billion concentrations.
  • Due to the high temperatures of operation, the life of the sensor can be shortened by on/off operation.
  • A major limitation is their unsuitability for trace oxygen measurements when reducing gases (hydrocarbons of any species, hydrogen, and carbon monoxide) are present in the sample gas. At operating temperatures of 650 degrees Centigrade, the reducing gases will react with the oxygen, consuming it prior to measurement thus producing a lower than actual oxygen reading.
  • The magnitude of the error is proportional to the concentration of reducing gas.
  • Zirconium oxide oxygen sensors are the “defacto standard” for in-situ combustion control applications.

Explore our range of oxygen safety and deficiency monitors.

Continue reading

Welcome Alpha Omega Instruments

Welcome Alpha Omega

PROCESS INSIGHTS ANNOUNCES THE ACQUISITION OF
ALPHA OMEGA INSTRUMENTS

BOSTON, MA – December 8, 2017.   Union Park Capital, a Boston based private equity firm focused on lower middle-market industrial technology investments, today announced the acquisition of Alpha Omega Instruments (“AOI”), based in Lincoln, RI.  The business manufactures process measurement and control instrumentation primarily, trace and percent oxygen analyzers and transmitters.  AOI will operate as an independent operating entity under Union Park’s Process Insights Holdings platform.  Terms of the transaction were not disclosed.
 
“We’ve known Richard and his business for some time,” said Morgan Jones, Managing Partner of Union Park Capital.  “After watching from the sidelines with admiration for many years, we are truly excited about adding AOI to our family of companies.  We believe it is an excellent fit with our process analytics platform and the addition of oxygen analysis to our product offering will enable us to better serve our global customer base.”
 
“The Union Park Capital team is keeping my employees in place and providing them the tools, resources and capital to grow the business,” said Richard Buonauito, Founder and President of AOI.  “I’ve built a relationship on trust over many years with Morgan and his team.  Working with them was a pleasure, and I am confident that this transaction represents the ideal outcome for both customers and employees.”
 
In keeping with Union Park’s historical business practice, AOI will remain in Lincoln, RI.  “We will continue to build upon the Alpha Omega Instrument brand that Richard and his team have created over the last 25 years.” Morgan continued.
 
About Alpha Omega Instruments  
Founded in 1990 by Richard Buonauito and Stanley Hayes, Alpha Omega Instruments manufacturers and designs solutions for process measurement and analysis.  The product portfolio consists of trace and percent oxygen analyzers and transmitters, safety monitors (oxygen deficiency and carbon dioxide) carbon dioxide analyzers, and moisture monitors. They are used by industrial, government, and educational institutions around the world for process optimization and safety applications.  For more information visit www.aoi-corp.com.
 
About Union Park Capital
Union Park Capital is a private equity firm solely focused on lower middle-market industrial technology companies.   Union Park takes a long-term perspective to help stakeholders build value over time, and drives value creation through profitably growing a business, not financial engineering.   Union Park Capital is based in Boston, MA and has extensive investments and expertise in the analytical instrumentation sector.  For more information, visit www.union-park.com.

Continue reading